Gibbs Sampling for Bayesian Non-Conjugate and Hierarchical Models by Using Auxiliary Variables

نویسندگان

  • Stephen Walker
  • Jon Wakefield
چکیده

We demonstrate the use of auxiliary (or latent) variables for sampling non-standard densities which arise in the context of the Bayesian analysis of non-conjugate and hierarchical models by using a Gibbs sampler. Their strategic use can result in a Gibbs sampler having easily sampled full conditionals. We propose such a procedure to simplify or speed up the Markov chain Monte Carlo algorithm. The strength of this approach lies in its generality and its ease of implementation. The aim of the paper, therefore, is to provide an alternative sampling algorithm to rejection-based methods and other sampling approaches such as the Metropolis±Hastings algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polya-gamma augmentations for factor models

Bayesian inference for latent factor models, such as principal component and canonical correlation analysis, is easy for Gaussian likelihoods with conjugate priors using both Gibbs sampling and mean-field variational approximation. For other likelihood potentials one needs to either resort to more complex sampling schemes or to specifying dedicated forms for variational lower bounds. Recently, ...

متن کامل

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

Bayesian non-parametric hidden Markov models with applications in genomics

We propose a flexible non-parametric specification of the emission distribution in hidden Markov models and we introduce a novel methodology for carrying out the computations. Whereas current approaches use a finite mixture model, we argue in favour of an infinite mixture model given by a mixture of Dirichlet processes.The computational framework is based on auxiliary variable representations o...

متن کامل

A General Framework for the Parametrization of Hierarchical Models

In this paper, we describe centering and noncentering methodology as complementary techniques for use in parametrization of broad classes of hierarchical models, with a view to the construction of effective MCMC algorithms for exploring posterior distributions from these models. We give a clear qualitative understanding as to when centering and noncentering work well, and introduce theory conce...

متن کامل

A Bayesian Framework for Learning Shared and Individual Subspaces from Multiple Data Sources

space learning for multi-view data: a large margin approach .WIDE: A real-world web image database from national university of singapore. sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables. A choice model with infinitely many latent features. [6] T. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. nonparametric join...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999